Persian Sentiment Analyzer: A Framework based on a Novel Feature Selection Method
نویسندگان
چکیده
In the recent decade, with the enormous growth of digital content in internet and databases, sentiment analysis has received more and more attention between information retrieval and natural language processing researchers. Sentiment analysis aims to use automated tools to detect subjective information from reviews. One of the main challenges in sentiment analysis is feature selection. Feature selection is widely used as the first stage of analysis and classification tasks to reduce the dimension of problem, and improve speed by the elimination of irrelevant and redundant features. Up to now as there are few researches conducted on feature selection in sentiment analysis, there are very rare works for Persian sentiment analysis. This paper considers the problem of sentiment classification using different feature selection methods for online customer reviews in Persian language. Three of the challenges of Persian text are using of a wide variety of declensional suffixes, different word spacing and many informal or colloquial words. In this paper we study these challenges by proposing a model for sentiment classification of Persian review documents. The proposed model is based on lemmatization and feature selection and is employed Naive Bayes algorithm for classification. We evaluate the performance of the model on a manually gathered collection of cellphone reviews, where the results show the effectiveness of the proposed approaches.
منابع مشابه
Feature Selection Methods in Persian Sentiment Analysis
With the enormous growth of digital content in internet, various types of online reviews such as product and movie reviews present a wealth of subjective information that can be very helpful for potential users. Sentiment analysis aims to use automated tools to detect subjective information from reviews. Up to now as there are few researches conducted on feature selection in sentiment analysis,...
متن کاملA New Framework for Distributed Multivariate Feature Selection
Feature selection is considered as an important issue in classification domain. Selecting a good feature through maximum relevance criterion to class label and minimum redundancy among features affect improving the classification accuracy. However, most current feature selection algorithms just work with the centralized methods. In this paper, we suggest a distributed version of the mRMR featu...
متن کاملFeature Extraction and Efficiency Comparison Using Dimension Reduction Methods in Sentiment Analysis Context
Nowadays, users can share their ideas and opinions with widespread access to the Internet and especially social networks. On the other hand, the analysis of people's feelings and ideas can play a significant role in the decision making of organizations and producers. Hence, sentiment analysis or opinion mining is an important field in natural language processing. One of the most common ways to ...
متن کامل2016 Olympic Games on Twitter: Sentiment Analysis of Sports Fans Tweets using Big Data Framework
Big data analytics is one of the most important subjects in computer science. Today, due to the increasing expansion of Web technology, a large amount of data is available to researchers. Extracting information from these data is one of the requirements for many organizations and business centers. In recent years, the massive amount of Twitter's social networking data has become a platform for ...
متن کاملA New Hybrid Framework for Filter based Feature Selection using Information Gain and Symmetric Uncertainty (TECHNICAL NOTE)
Feature selection is a pre-processing technique used for eliminating the irrelevant and redundant features which results in enhancing the performance of the classifiers. When a dataset contains more irrelevant and redundant features, it fails to increase the accuracy and also reduces the performance of the classifiers. To avoid them, this paper presents a new hybrid feature selection method usi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1412.8079 شماره
صفحات -
تاریخ انتشار 2014